
Grouping multiple RDF graphs in the collections

Dominik Tomaszuk1 and Henryk Rybi«ski2

1 Faculty of Mathematics and Informatics,
University of Bialystok, Poland
dtomaszuk@ii.uwb.edu.pl

2 Institute of Computer Science,
Warsaw University of Technology, Poland

h.rybinski@ii.pw.edu.pl

Abstract. This paper de�nes a document-oriented Resource Descrip-
tion Framework (RDF) graph store. It proposes collections for group-
ing multiple graphs. We de�ne a lightweight representation of graphs
which emphasizes legibility and brevity. We also present an implemen-
tation of our system, an algorithm of mapping to a pure RDF model
and algorithms of generation and normalization. Our proposal supports
knowledge metrics for RDF graphs.

Keywords: Semantic Web, graph store, document-oriented database,
serialization, provenance, metric, semistructural data

1 Introduction

Knowledge representation deals with how knowledge is represented, in the case
at hand based on Semantic Web standards including RDF [9] and OWL [1], while
knowledge storing is the way in which the knowledge is retained in a computer:
RDF, one of the foundations of Linked Data and the Semantic Web at large, is
used for knowledge representation on the Web. The tools supporting processing
and storage of RDF appeared in the beginning of the 21st century, but they have
a number of drawbacks and limitations:

� No mechanisms to store access and subgraph selection in compliance with
the Linked Data principles.

� No possibility of grouping graphs, which make graph provenance and other
related metrics hard if not impossible to realise.

� Problems with capacity related to data processing and access to data, result-
ing from no normalisation of structures; the existing proposals do not allow
for generating optimal structures, needed in certain use cases.

The current solutions do not o�er complete storage access mechanisms. The
RDF graph store in connection with such proposals as semi-structured docu-
ments together with serialisation means a complete solution of problems related
to knowledge storing and processing in a Linked Data environment, resulting in
an improvement of the possibilities to access it in the graph store.



2 D. Tomaszuk, H. Rybi«ski

In this paper is presented an approach of grouping multiple RDF graphs
in the collections, which providing various metrics. Our proposal extends RDF
graphs to values, which can symbolize metrics such as temporal, uncertainty
and trust. We also introduce implementation and algorithms of generating and
normalization for this approach. Our proposal allows to store knowledge met-
rics near RDF graphs. Moreover, we propose document serialisation, which can
contain additional metadata about stored RDF triples.

2 Collections in RDF Graph Store

In this section we introduce a document-oriented graph store with collections
and document serialization for the graph store.

2.1 Collections and Graph Store

In this subsection we propose a document-oriented graph store that is not bound
to any prede�ned database types. Instead, it is close to the RDF data, so that
no prede�ned structure is needed. The graph store can be thought of as a store
including containers so called data collections or simply collections. A data collec-
tion is similar to a relation from relational databases. A collection is represented
by a graph, provenance and list of metrics. These collections include multiple
documents and documents store serialized RDF statements. The concept of a
document is a central element of the graph store. The documents consist of
RDF data. For the sake of generality in our considerations, we de�ne here a
document as an ordered set of keys with associated values, which can be one of
several di�erent datatypes.

Hence, a collection can be seen as a group of RDF triples (representing doc-
uments). A collection is a tuple C = 〈r, [v1, v2, . . . , vi], G〉, where:

1. r ∈ I is the provenance of a graph, which can be interpreted as IRI,
2. [v1, v2, . . . , vi] is a list of metrics (v ∈ L), which can be interpreted as tem-

poral [13], uncertainty [18] and/or trust metrics [20],
3. G is an RDF graph.

A provenance provides information about a graph's origin, such as who created
it, when it was modifed, or how it was created. It is used for building represen-
tations of entities, involved in producing a piece of data. Special metrics provide
information about RDF graph characteristics.

A document-oriented graph store is GSD = {C1, C2, . . . , Ci}, where every Ci

is a collection, i ≥ 1.

2.2 Document Serialization

In this subsection we introduce a concept of RDF in JSON Document (in the
following sections denoted by RDFJD) and their serialization. Serialization is the



Grouping multiple RDF graphs in the collections 3

process of converting a data structure into a format that can be stored and trans-
mitted across the web and reconstructed later in the same or another computer
environment. We de�ne a document as a resource that serves as the container of
semistructural data. One of the semistructural data formats is JavaScript Ob-
ject Notation (JSON) [8], which is a syntax designed for human-readable data
interchange and easy for machines to generate. It uses both simple datatypes,
such as number, string or boolean and composite data types, such as array and
object.

We propose serialization based on JSON, which is equivalent to the RDF
model. The proposal is a lightweight textual syntax that can easily be modi�ed
by humans, servers and clients. The advantage of this syntax is that it can easily
be transformed from other syntaxes. Another bene�t of serializing RDF graphs
in JSON is that there are many software libraries and built-in functions, which
support the serialization.

The di�erence between regular JSON and RDFJD is that the above RDFJD
object uniquely identi�es itself on the World Wide Web and can be used, without
introducing ambiguity across the Web Service using a document-oriented graph
store.

The proposed structure can be modeled as a set of an abstract data structure
with two operations:

1. U = get(C,Y) � returning a list of objects U , where C is a collection, Y is a
key,

2. set(C,Y,U) � causes a key Y and a list of objects U to be stored at a
collection C.

We propose two types of RDFJD documents:

1. directive document , which expresses the context of statement documents,

2. statement document , which expresses RDF statements.

A directive document is associated with a collection and implements the
knowledge metrics, provenance, and de�nes the short-hand names that are used
throughout an RDFJD statement document. The directive document is a meta-
data package of a collection. This document should be unique. All the possible
keys in a directive document are presented in Table 1. The list of metrics and
provenance keys should impose a unique key constraint.

In the Listing 1 we present a directive document. The RDFJD document con-
tains �elds which de�ne the provenance (http://example.org/g1) and trust
(0.9) of the collection. It also de�nes a foaf pre�x as an abbreviation for
http://xmlns.com/foaf/0.1/.



4 D. Tomaszuk, H. Rybi«ski

1 {
2 "_prov ": "http :// example.org/g1",
3 "_metric ": [0.9],
4 "foaf": "http :// xmlns.com/foaf /0.1/"}

Listing 1. Directive document

Table 1. RDFJD directive document keys

Key Description

_metric a prede�ned value of collection metric
_prov a prede�ned value of collection provenance

pre�x ID abbreviating IRIs

A statement document is the main part, which stores RDF statements with
extensions. A statement document uses subject-centric syntax, and it represents
one or more properties of a subject. Often these documents occur more than
once in the context of collection. They implement the subject as prede�ned
keys, predicates as keys and objects as values. Plain literals with a language tag
and typed literals are supported by special prede�ned keys. All the possible keys
in a statement document are presented in Table 2.

In the Listing 2 we present a statement document. Key foaf.name is ex-
pand to value from a directive document (see Listing 1). The RDFJD document
contains �elds which de�ne RDF statements:

1. triple 1: http://example/voc#me, rdf:type, http://example/voc#Teacher

2. triple 2: http://example/voc#me, http://xmlns.com/foaf/0.1/name, John
Smith

1 {
2 "_subject ": "http :// example/voc#me",
3 "_type ": {" _value ": "http :// example/voc#Teacher"},
4 "foaf.name": {" _value ": "John Smith"}
5 }

Listing 2. Statement document

3 Generating Algorithms

In this section we propose algorithms for serialization, normalization, and map-
ping into named graph model.



Grouping multiple RDF graphs in the collections 5

Table 2. RDFJD statement document keys

Key Description

_subject Used to identify subject that are being described
_type Used to set the datatype of a subject

predicate key Used to describe object

Possible values of predicate key

_value Used to specify the data that is associated with a particular predicate
_lang Used to specify the native language for a particular object

_datatype Used to specify the datatype for a particular object

3.1 Serialization and Normalization

Algorithm 2 shows the process of generating RDFJD statement document. The
algorithm creates triples. The algorithm takes into account the simple literals
without a language tag, simple literals with a language tag and typed literals.

There is the possibility that the same subject could occur in di�erent RD-
FJD statement documents (e.g. because of the insertion of new statements). To
improve the speed of data retrieval operations on a subject-centric statement
there is the necessity to merge two or more statement documents with the same
subject. Algorithm 1 presents the process of merging RDFJD documents. After
this action an index may be applied to the subject.

input : set of statement document SD
output: statement document SDM

1 SDt ← sort(SD);
2 foreach s∈SDt do
3 if equal(current(), next()) then
4 merge(current(), next());

Algorithm 1: Merging statement documents

3.2 Mapping into Named Graph Model

In this subsection the mapping from our approach to the named graph model
[6] is presented. A collections C = (r, [], G) is equivalent to named graph ng =
(n,G), where n ∈ I is name of graph G. To case where C = (r, [v1, v2, . . . , vi], G)
we proposed to use value object property de�ned in [20], which allows to include
metric values. Algorithm 3 presents the process of transformation, which uses
named graphs.



6 D. Tomaszuk, H. Rybi«ski

input : set of RDF triples T
output: set of statement documents SD

1 create root object;
2 foreach t∈ T do

3 get subject s from t;
4 insert s into "_subject" key;
5 get predicate p from t;
6 get object o from t;
7 if equal(p, "rdf:type") then
8 create "_type" key;
9 insert o into "_type" key;

10 else

11 add pre�x(p) to directive document;
12 create key abbreviation(p);
13 if o is literal without a language tag then

14 insert o into abbreviation(p) key;

15 else if o is literal with a language tag then

16 create "_value" key in abbreviation(p) key;
17 insert o into "_value" key;
18 get language lg from o;
19 create "_language" key in abbreviation(p) key;
20 insert lg into "_language" key;

21 else

22 create "_value" key in abbreviation(p) key;
23 insert o into "_value" key;
24 get datatype dt from o;
25 create "_datatype" key in abbreviation(p) key;
26 insert dt into "_datatype" key;

Algorithm 2: Generating statement document



Grouping multiple RDF graphs in the collections 7

The RDF graph store can also be mapped to an RDF dataset. Following [14],
RDF dataset DS consists of one graph, called the default graph, which does not
have a name, and zero or more named graphs, each identi�ed by IRI. We assume
that NG = {(u1, G1), (u2, G2), . . . , (un, Gn)} is a set of named graphs, where all
IRI references are disjoint. An RDF dataset is DS = {G,NG}, where G is called
default graph and NG is a set of named graphs. If in GSD = {C1, C2, . . . , Ci},
C1 = (∅,∅, G) then DS is equivalent to GSD. Otherwise, we suggest to map
from Ci to (ui+1, Gi+1) and use Algorithm 3. It is also possible to use RDF
rei�cation with the same metric in all statements, but this solution is much
more verbose than our proposal.

input : collection C
output: named graph NG, default graph G

1 get r from C;
2 get v from C;
3 create NG with r as a name;
4 create default graph G;
5 foreach q∈ C do

6 get triple t from triple with metric;
7 insert t into NG;
8 get metric m;
9 if equal(m, ∅) then

10 insert (r, "value", v) into G;

11 else

12 insert (r, "value", m) into G;

Algorithm 3: Mapping to Named Graphs

4 Implementation and Experiments

In this section we present the implementation and experiments of our approach.
We used NoSQL database MongoDB3 as the development platform. The testbed
consists of the following three parts: query engine (applying matching Applica-
tion Programming Interface), resources stored in collections (a part of the RDF
graph store), and Representational State Transfer (REST) [11] client. The main
part of the prototype is the matching API, which maps Hypertext Transfer Pro-
tocol (HTTP) request methods to object-oriented imperative query language.

Now we present load tests, which we performed on the Berlin SPARQL
Benchmark [3]. We also discuss the results of these tests. The load experiment
measures the time required to load on the testbed and Virtuoso Open-Source
Edition 6.1, which is the leading graph store supporting the biggest Linked Data
knowledge base DBpedia4.

3 http://www.mongodb.org/
4 http://dbpedia.org/



8 D. Tomaszuk, H. Rybi«ski

In Fig. 1a. we show loading of normalized RDFJD serialization into our
testbed and RDF into Virtuoso. This plot shows that loading triples into Virtu-
oso is much faster than loading statements into testbed. For the loading 40000
statements Virtuoso is up to 60 times faster. The testbed times are nearly
quadratic to the number of quads and the coe�cient of determination R2 ≈ 0.99.
The Virtuoso times are nearly linear to the number of triples and the coe�cient
of determination R2 ≈ 0.98.

Taking into consideration that the times of textual RDFJD are nearly quadratic,
we propose binary representation of RDFJD. The design goals for it emphasized
performance. In particular, it is designed to be smaller and faster than textual
version and it is fully compatible. Compared to textual RDFJD, binary RDFJD
is designed to be e�cient both in storage space and scan-speed. Our proposal
represents data types in little-endian format. Large elements are pre�xed with
a length �eld to facilitate scanning. In Fig. 1b. we show the loading of binary
normalized RDFJD serialization into the testbed. This plot shows that loading
statements into the testbed is much faster than loading statements into Virtu-
oso. The load times of the testbed with binary serialization are approximately
2.4 times faster than the load times of Virtuoso. At 40000 statements the loading
of binary RDFJD into the testbed is up to 10 times faster than the loading of
RDF into Virtuoso.

104 104.5

100

101

102

No of statements

T
im

e
se
c

Fig. 1a. Textual

Testbed

Virtuoso

1 2 3 4

·104

2

4

6

No of statements

T
im

e
se
c

Fig. 1b. Binary

Testbed

Virtuoso

Fig. 1. Load test: Testbed comparison to Virtuoso

5 Related work

While the pure RDF does not allow referring to whole RDF graphs, named
graphs introduced in [6] provide the means to group a set of statements in a



Grouping multiple RDF graphs in the collections 9

graph. This approach may be su�cient for RDF graph stores only with prove-
nance metrics. Unfortunately, it is not satisfactory for other metrics. Schenk et
al. propose Networked Graphs [16]. It allows a user to de�ne RDF graphs by us-
ing a SPARQL CONSTRUCT clause and a named graph model. Unfortunately,
this approach may be insu�cient for RDF graph stores, which do not support
SPARQL queries or named graphs. Shaw et al. [17] propose vSPARQL which
allows to de�ne virtual graphs and use recursive subqueries to iterate over paths
of arbitrary lengths. It also extends SPARQL by allowing to create new entities
based upon the data encoded in existing datasets.

On the other hand there are RDF serializations [12, 7, 2, 15, 5, 4]. RDF/XML
[12] is XML compatible syntax, which nodes and predicates must be represented
in the names of elements, names of attributes, contents of elements or values of
attributes. RDF/XML may not be fully described by such schemes as DTD or
XML Schema. Another disadvantage of this syntax is its incapability of encoding
all legal RDF graphs. It not handle named graphs, while Triples In XML (TriX)
[6] serialisation does. TriX used XML syntax as well but it is not compatible
with [12]. Another proposal refers to Terse RDF Triple Language (Turtle) [15]
is simpli�cation and subset of [2]. This solution o�ers textual syntax that makes
it possible to record RDF graphs in a completely compact form. The drawbacks
of this proposal include the fact that it is not capable of handling named graphs
and its possibility to represent RDF triples in an unnormalised form. N-Triples
[5] and N-Quards [4] are also a textual format of RDF serialisation. It is based
on Turtle. Unfortunately, there are sign restrictions imposed on older version
by US-ASCII standard and it does not handle named graphs. There are also
serializations based on the JSON syntax [21, 19]

Foregoing serializations are supported by various graph stores. One of them
is Virtuoso [10]. It is a row-wise transaction oriented database. It is re-targeted
as an RDF store and inference. It is also revised to column-wise compressed
storage and vectored execution.

6 Conclusions

The problem of how to group RDF triples and support metrics in these groups
has produced many proposals. We assume that RDF, being more functional,
should provide a method to set the metrics and provenance at the graph level.

We have produced a simple and thought-out proposal for grouping multiple
RDF graphs in collections. We propose how our approach can be used in combi-
nation with various metrics. We believe that our idea is an interesting approach,
because it can be transformed to the pure RDF and named graphs models. More
importantly, we have provided algorithms for the generation and normalization
of these semistructural data. Our approach extends the classical case of RDF
with collections. The implementation shows its great potential.

We believe that our approach o�ers a �exible way to represent RDF data,
we acknowledge, however, that there are areas that are subject to future inves-
tigation, such as replication of collections, versioning and access control.



10 D. Tomaszuk, H. Rybi«ski

References

1. Jie Bao, Elisa F. Kendall, Deborah L. McGuinness, and Peter F. Patel-Schneider.
Owl 2 web ontology language quick reference guide (second edition). Technical
report, World Wide Web Consortium, 2013.

2. Tim Berners-Lee and Dan Connolly. Notation3 (n3): A readable rdf syntax. Tech-
nical report, World Wide Web Consortium, 2008.

3. Christian Bizer and Andreas Schultz. Benchmarking the performance of storage
systems that expose sparql endpoints. World Wide Web Internet And Web Infor-
mation Systems, 2008.

4. Gavin Carothers. Rdf 1.1 n-quads. Technical report, World Wide Web Consortium,
2014.

5. Gavin Carothers and Andy Seaborne. Rdf 1.1 n-triples. Technical report, World
Wide Web Consortium, 2014.

6. Jeremy J Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs,
provenance and trust. In Proceedings of the 14th international conference on World
Wide Web, pages 613�622. ACM, 2005.

7. Jeremy J Carroll and Patrick Stickler. Rdf triples in xml. In Proceedings of the
13th international World Wide Web conference on Alternate track papers & posters,
pages 412�413. ACM, 2004.

8. Douglas Crockford. The application/json media type for javascript object notation
(json). Technical report, Internet Engineering Task Force, 2006.

9. Richard Cyganiak, David Wood, and Markus Lanthaler. Rdf 1.1 concepts and
abstract syntax. Technical report, World Wide Web Consortium, 2014.

10. Orri Erling and Ivan Mikhailov. Rdf support in the virtuoso dbms. In Networked
Knowledge-Networked Media, pages 7�24. Springer, 2009.

11. Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, 2000.

12. Fabien Gandon and Guus Schreiber. Rdf 1.1 xml syntax. Technical report, World
Wide Web Consortium, 2014.

13. Claudio Gutierrez, Carlos A Hurtado, and Alejandro Vaisman. Introducing time
into rdf. Knowledge and Data Engineering, IEEE Transactions on, 19(2):207�218,
2007.

14. Steve Harris and Andy Seaborne. Sparql 1.1 query language. Technical report,
World Wide Web Consortium, 2012.

15. Eric Prud'hommeaux and Gavin Carothers. Rdf 1.1 turtle. Technical report, World
Wide Web Consortium, 2014.

16. Simon Schenk and Ste�en Staab. Networked graphs: a declarative mechanism for
sparql rules, sparql views and rdf data integration on the web. In Proceedings of
the 17th international conference on World Wide Web, pages 585�594. ACM, 2008.

17. Marianne Shaw, Landon T Detwiler, Natalya Noy, James Brinkley, and Dan Suciu.
vsparql: A view de�nition language for the semantic web. journal of biomedical
informatics, 44(1):102�117, 2011.

18. Umberto Straccia. A minimal deductive system for general fuzzy rdf. In Web
Reasoning and Rule Systems, pages 166�181. Springer, 2009.

19. Dominik Tomaszuk. Named graphs in rdf/json serialization. Zeszyty Naukowe
Politechniki Gda«skiej, pages 273�278, 2011.

20. Dominik Tomaszuk, Karol P¡k, and Henryk Rybi«ski. Trust in rdf graphs. In
Advances in Databases and Information Systems, pages 273�283. Springer, 2013.

21. World Wide Web Consortium. Flat triples approach to RDF graphs in JSON, 2010.


